MAKING EMPIRICAL POWER-LAW DISTRIBUTIONS USEFUL

OR: HOW TO FIT CURVES & DO STATISTICAL VALIDATION WITH HIGH-VARIANCE DATA, AND AN APPLICATION OF THESE TECHNIQUES TO SOME EMPIRICAL "POWER LAWS" (WITH PREDICTABLE RESULTS)

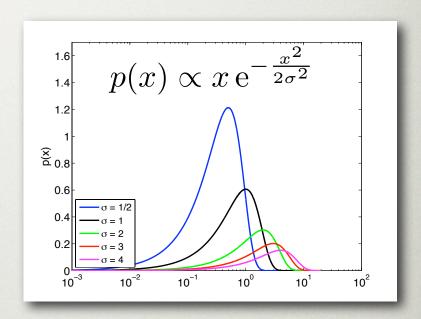
Aaron Clauset Santa Fe Institute

Algorithms, Inference, and Statistical Physics Workshop
4 May 2007

STATISTICAL DISTRIBUTIONS

Low-variance ("thin-tailed") distributions

- Maxwell-Boltzmann
- Gaussian (Normal)
- Rayleigh
- etc.

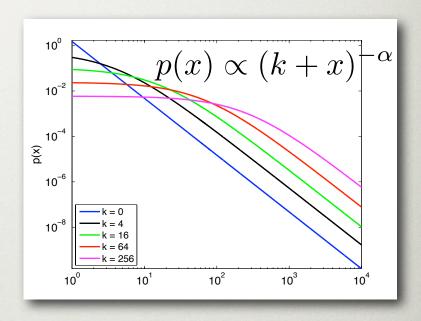


Mean is representative of almost all samples

STATISTICAL DISTRIBUTIONS

High-variance ("heavy-tailed") distributions

- Zipf
- Yule-Simon
- "power law"
- etc.



Mean is not representative of most samples

MOTIVATION

PL distributions are mathematically **interesting**. (imply heterogeneity & scalability)

PL distributions appear ubiquitous in data.

SOME PROBLEMS

ullet Common methods misestimate the scaling behavior lpha

"Doesn't scale the way you think it does."

• Behavior rarely validated (i.e., compared to alternative, non-PL models)

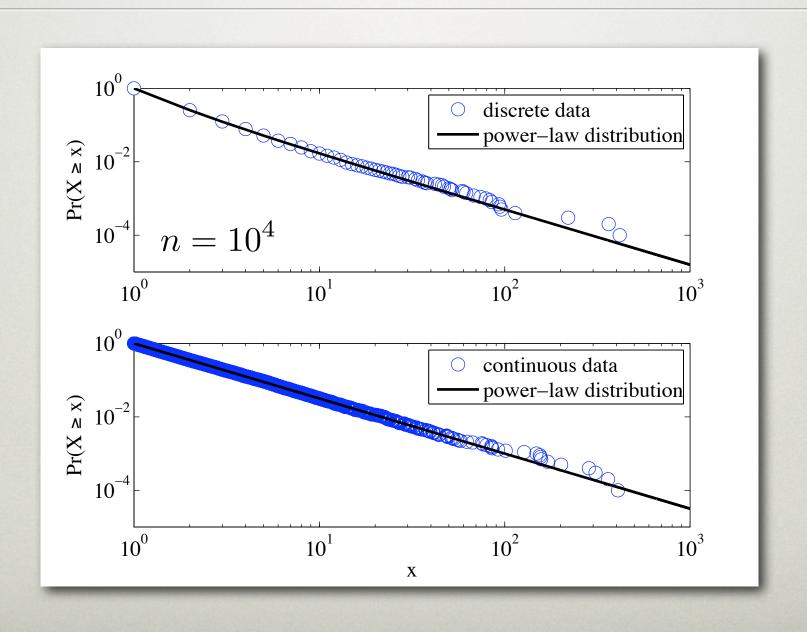
"Maybe it's **not** a power law."

SOME GOALS

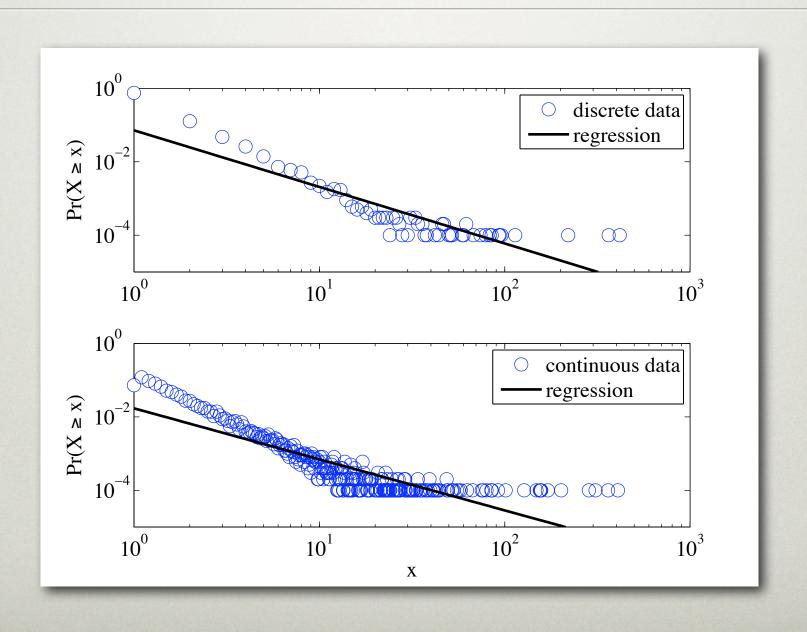
How can empirical PL distributions be useful?

- Useful for model selection
 "What kind of theory should I look for?"
- Useful for (soft) validation
 "My theory explains my data."
- Deviations point to interesting phenomena
 "My theory doesn't explain this part."

ESTIMATING α



REGRESSION ON PDF



ML ESTIMATORS

Continuous power-law distribution

$$\hat{\alpha} = 1 + n / \left[\sum_{i=1}^{n} \ln \frac{x_i}{x_{\min}} \right]$$

$$\sigma_{\hat{\alpha}} \simeq \frac{\hat{\alpha} - 1}{\sqrt{n}}$$

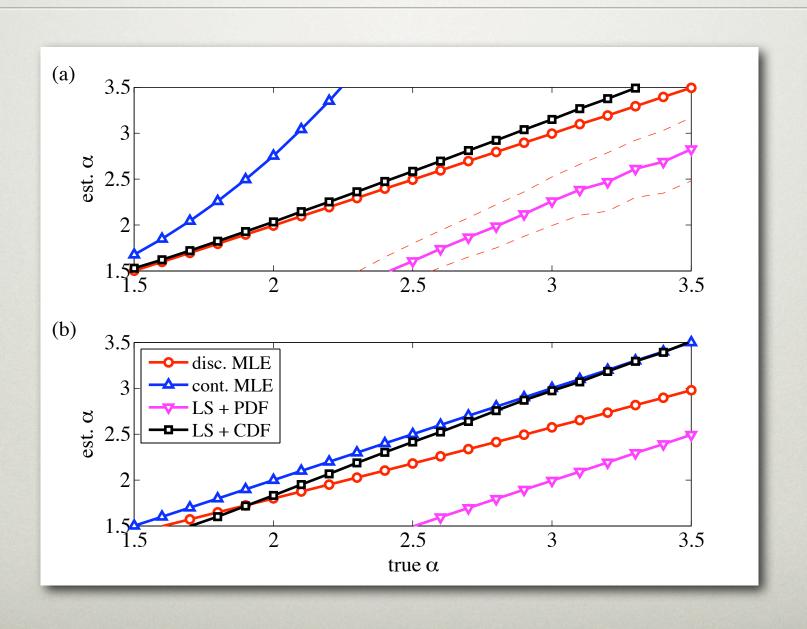
Discrete power-law distribution

$$\frac{\zeta'(\hat{\alpha}, x_{\min})}{\zeta(\hat{\alpha}, x_{\min})} = -\frac{1}{n} \sum_{i=1}^{n} \ln x_i$$

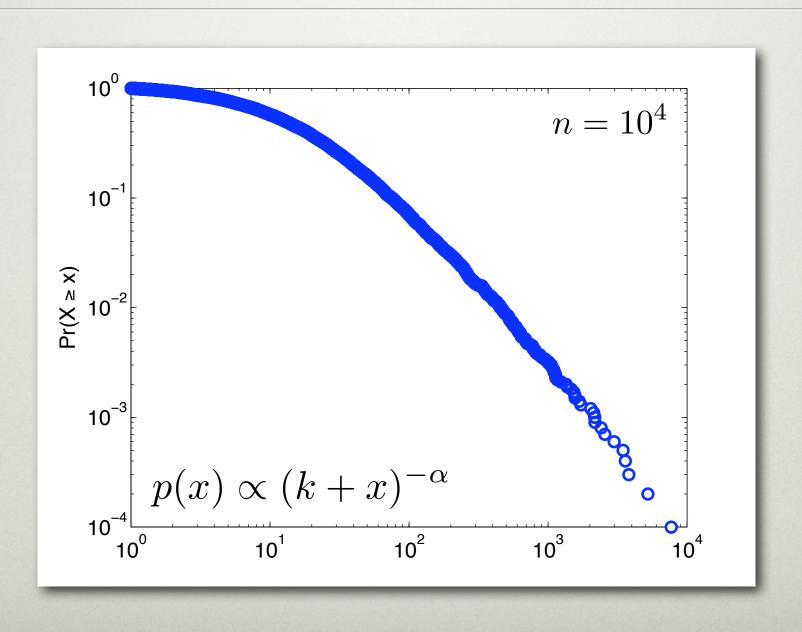
COMPARISON

		est. α	est. α
method	notes	(discrete)	(continuous)
LS + PDF	const. width	1.5(1)	1.39(5)
LS + CDF	const. width	2.37(2)	2.480(4)
LS + PDF	log. width	1.5(1)	1.19(2)
LS + CDF	rank-freq	2.570(6)	2.4869(3)
cont. MLE	<u>—</u>	4.46(3)	2.50(2)
disc. MLE	<u>—</u>	2.49(2)	2.19(1)

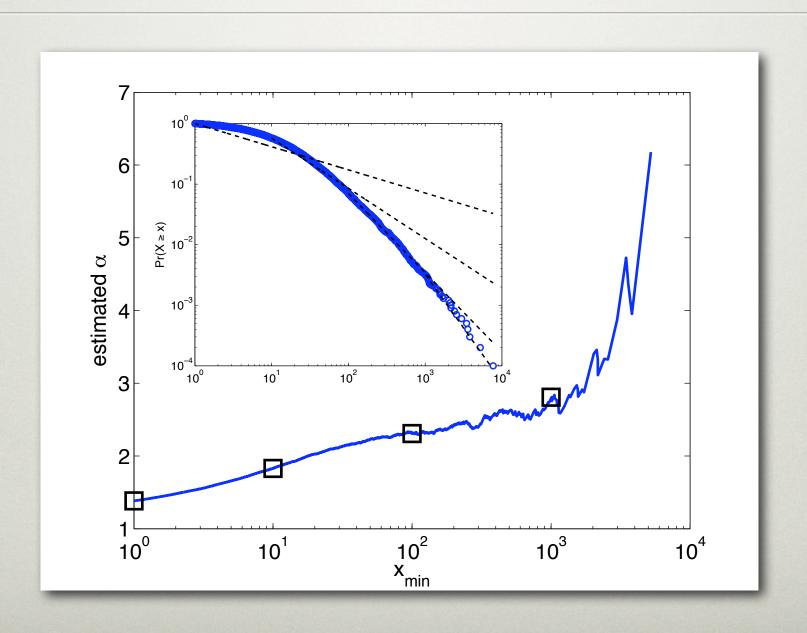
IN GENERAL



ESTIMATING x_{\min}



A FEW CHOICES



AN OBJECTIVE METHOD

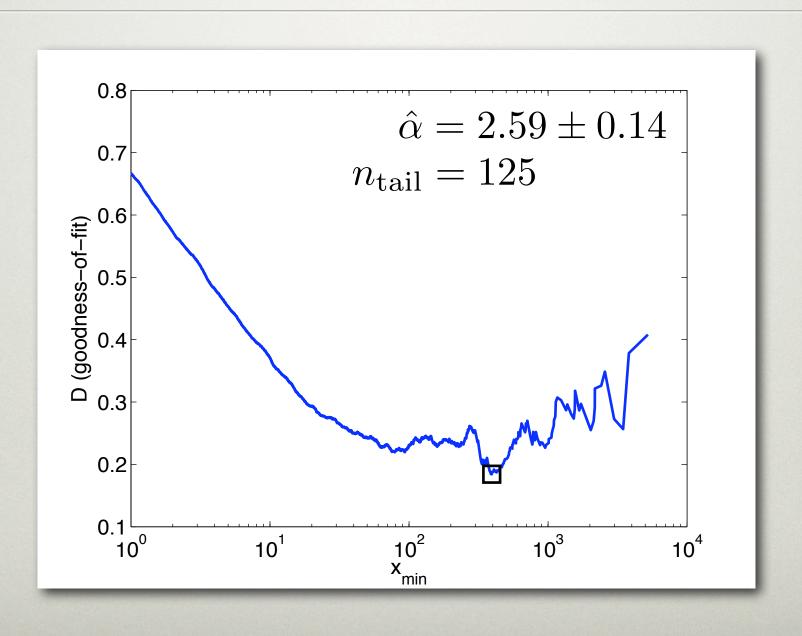
Choose power law that minimizes "distance" between model and data:

Kolmogorov-Smirnov goodness-of-fit statistic

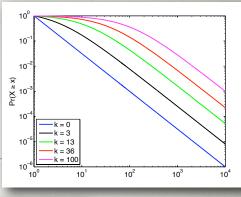
$$D(x_{\min}) = \max_{x \ge x_{\min}} |S_n(x) - P(x)|$$

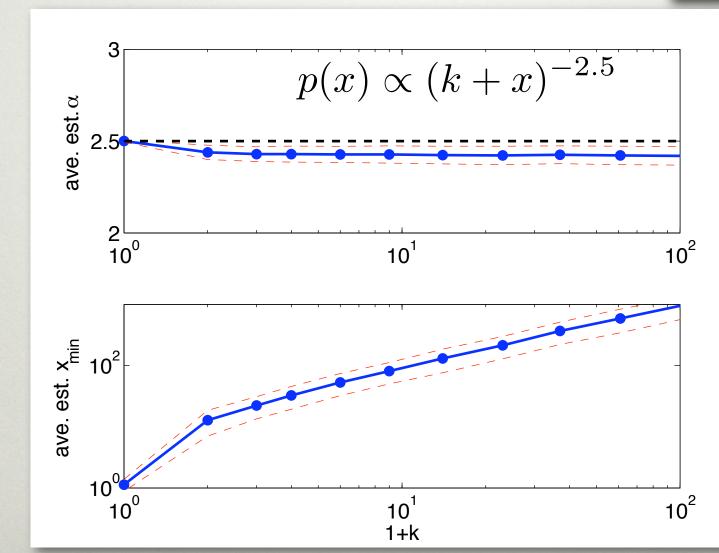
We choose
$$\hat{x}_{\min} = \min_{y} D(y)$$

GOF RESULTS



IN GENERAL

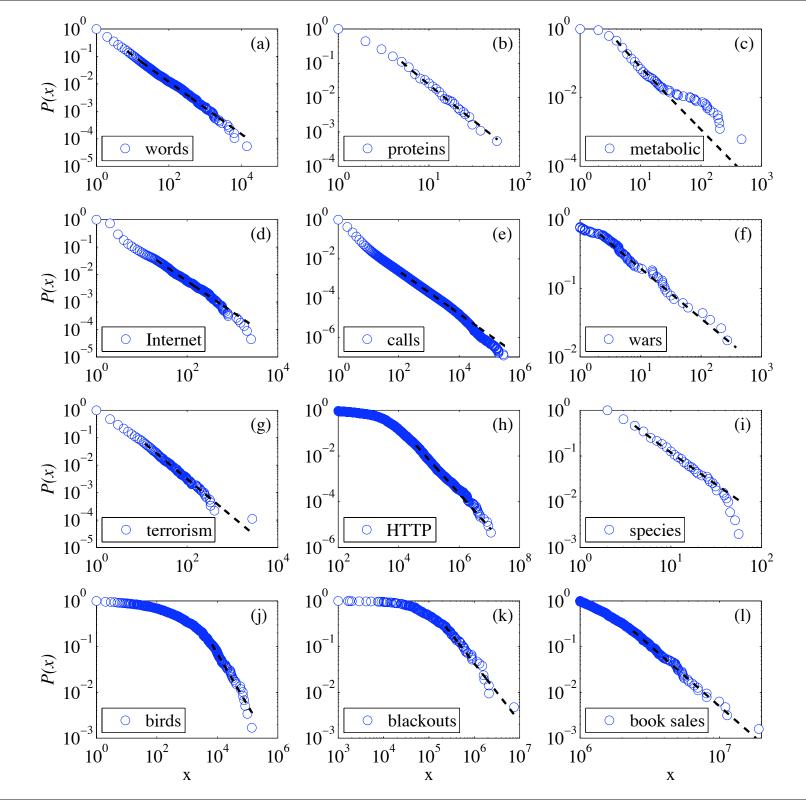


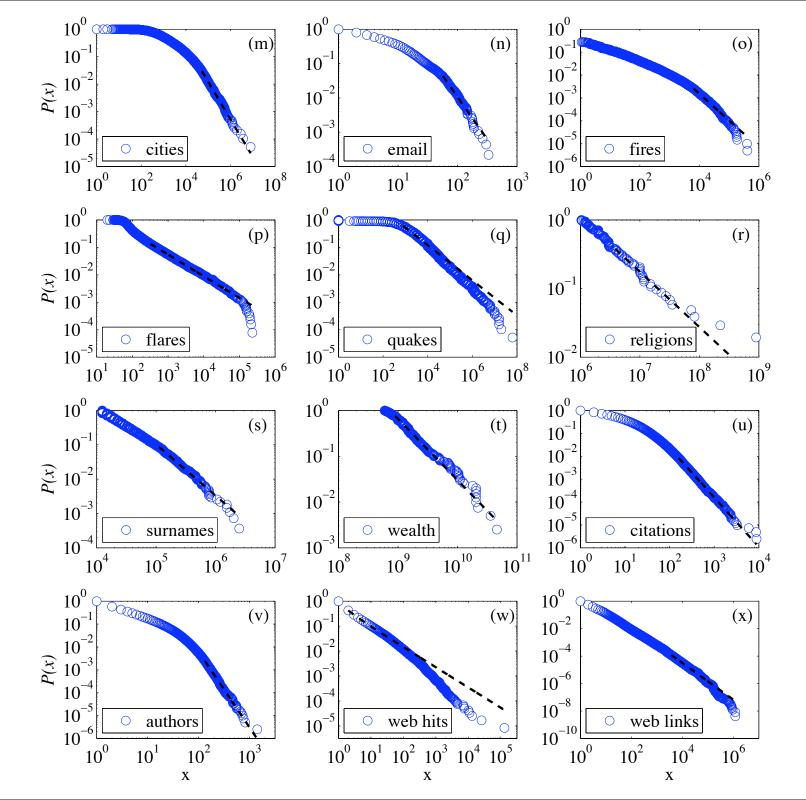


SOME REAL DATA

count of word use protein interaction degree metabolic degree Internet degree telephone calls received intensity of wars terrorist attack severity HTTP session size (kB) species per genus bird species sightings blackouts sales of books

population of cities email address books size forest fire size (acres) solar flare intensity quake intensity religious followers freq. of surnames net worth (mil. USD) citations to papers papers authored hits to web sites links to web sites





VALIDATION

Two approaches:

• *p*-value

"Are deviations from PL model explained by statistical fluctuations?"

• likelihood ratio (LR)

"Does this other model look more like the data?"

SUPPORT FOR POWER LAW

	power law	log-normal	w. cut-off	support for
data set	p	LR	LR	power law
cities	0.761	-0.435	-0.298	reasonable
fire	0.045	-1.78	-5.02	w. cut-off
flares	0.997	-0.803	-4.52	w. cut-off
HTTP	0.000	1.59	0.000	none
quakes	0.000	-7.14	-24.4	w. cut-off
wealth	0.001	-0.0777	-0.198	none
web hits	0.000	0.255	0.000	none

SUPPORT FOR POWER LAW

	power law	log-normal	w. cut-off	support for
data set	p	LR	LR	power law
Internet	0.286	-0.807	-1.97	reasonable
citations	0.204	-0.141	-0.007	reasonable
metabolic	0.000	-1.05	0.000	none
species	0.103	-1.63	-3.80	w. cut-off
terrorism	0.684	-0.278	-0.077	reasonable
words	0.487	0.395	-0.899	good

CONCLUSIONS

- ullet Only maximum likelihood accurately estimates lpha
- Can now accurately (and objectively) estimate x_{\min}
- Validating power-law distributions possible
- Some "power laws" should be "revisited"
- Deviations from PL can suggest new hypotheses

Thanks (comments and data): L. Adamic, A. Boyer, A. Broder, A. Downey, J.D. Farmer, P. Holme, M. Huss, J. Karlin, J. Ladau, M. Mitzenmacher, C. Moore, S. Redner, S. Stoev, M. Wheatland, J. Wiener, W. Willinger and M. Young

FIN